This form is a summary description of the model entitled "HypertorusGrid" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

 \mathbf{MCC} 2016

Description

A hypertorus is obtained from a hypercube via closing (connecting) opposite facets in each dimension. A cell of hypertorus grid represents a computing and packet switching device with ports situated on facets of the unit-sized hypercube. A device works in full-duplex mode using store-and-forward principle with limited capacity of buffer. Neighboring cells are connected via merging contact places situated on common facets.

References

[1] Zaitsev D.A., Zaitsev I.D., Shmeleva T.R. Infinite Petri Nets as Models of Grids. Chapter 19 in Mehdi Khosrow-Pour (Ed.) Encyclopedia of Information Science and Technology, Third Edition (10 Volumes). IGI-Global: USA, pp. 187–204, 2014.

[2] Zaitsev D.A. Verification of Computing Grids with Special Edge Conditions by Infinite Petri Nets, Automatic Control and Computer Sciences, 2013, vol. 47, no. 7, pp.403–412.

[3] Zaitsev D.A. Generator of hypertorus Petri net models. http://github.com/dazeorgacm/htgen

Scaling parameter

Parameter name	Parameter description	Chosen parameter values	
(d,k,p,b)	d – dimension of hypertorus;	(2,1,8,0), (2,2,1,0), (2,3,2,4), (3,3,2,6),	
	k – size in each dimension, totally k^d nodes;	(4,3,2,8), (5,3,2,10)	
	p – number of packets in each section of the		
	internal buffer;		
	b – available buffer size.		
	d and k influence the Petri net structure		
	while p and d define its initial marking.		

Size of the model

Parameter	Number of places	Number of transitions	Number of arcs
(d,k,p,b)	$6 \cdot d \cdot k^d + k^d$	$4 \cdot d^2 \cdot k^d$	$16 \cdot d^2 \cdot k^d$
(2, 1, 8, 0)	13	16	64
(2, 2, 1, 0)	52	64	256
(2, 3, 2, 4)	117	144	576
(3, 3, 2, 6)	513	972	3888
(4,3,2,8)	2025	5184	20736
(5, 3, 2, 10)	7533	24300	97200

Structural properties

ordinary — all arcs have multiplicity one	🗸
simple free choice — all transitions sharing a common input place have no other input place	. X (a)
extended free choice — all transitions sharing a common input place have the same input places	. X (b)
state machine — every transition has exactly one input place and exactly one output place	, X (c)
marked graph — every place has exactly one input transition and exactly one output transition	. X (d)
connected — there is an undirected path between every two nodes (places or transitions)	. 🖌 (e)
strongly connected — there is a directed path between every two nodes (places or transitions)	. 🖌 (f)
source $place(s)$ — one or more places have no input transitions	. 🗡 (g)
sink place(s) — one or more places have no output transitions	. X (h)
source transition(s) — one or more transitions have no input places	. 🗡 (i)
sink transitions(s) — one or more transitions have no output places	🗡 (j)
loop-free — no transition has an input place that is also an output place	. 🖌 (k)
conservative — for each transition, the number of input arcs equals the number of output arcs	🖌 (1)
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs	🖌 (m)
nested units — places are structured into hierarchically nested sequential units $^{(n)}$	🗡

^(a) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

^(b) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

^(c) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above). ^(d) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

⁽e) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

^(f) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

⁽g) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

^(h) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

 ⁽i) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).
(j) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

⁽k) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

⁽¹⁾ stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

^(m) stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

⁽ⁿ⁾the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

Behavioural properties

${f safe}-in$ every reachable marking, there is no more than one token on a place $\ldots\ldots\ldots\ldots$	(()
dead place(s) — one or more places have no token in any reachable marking \dots	? (p)
dead transition(s) — one or more transitions cannot fire from any reachable marking \ldots	(q)
deadlock — there exists a reachable marking from which no transition can be fired	. 🗸
reversible — from every reachable marking, there is a transition path going back to the initial marking	. X
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire	. X

 \mathbf{MCC} 2016

Size of the marking graphs

Parameter	Number of reach-	Number of tran-	Max. number of	Max. number of
	able markings	sition firings	tokens per place	tokens per marking
(2, 1, 8, 0)	87552	667632	32	36
(2, 2, 1, 0)	$\geq 7.50898e + 08^{(r)}$?	?	$\geq 32^{(s)}$
(2, 3, 2, 4)	?	?	?	$144^{(t)}$
(3, 3, 2, 6)	?	?	?	648 ^(u)
(4, 3, 2, 8)	?	?	?	$2592^{(v)}$
(5, 3, 2, 10)	?	?	?	$9720^{(w)}$

Other properties

To observe a deadlock, there should be enough packets (p) compared to available buffer size (b) to block a couple or more devices [1,2].

Using *htgen* [3], a model in format .net of Tina modeling system (http://www.laas.fr/tina) was built for given values of parameters.

 $^{^{\}rm (o)}$ stated by CÆSAR.BDD version 2.6 on all 6 instances (i.e., the six quadruples listed above).

⁽p) stated by CÆSAR.BDD version 3.3 to be false on 5 instance(s) out of 6, and unknown on the remaining 1 instance(s).

⁽q) stated by CÆSAR.BDD version 2.6 to be false on 2 instance(s) out of 6, and unknown on the remaining 4 instance(s).

 $^{^{(}r)}$ stated by CÆSAR.BDD version 2.6.

^(s) lower bound given by the number of initial tokens.

^(t) number of initial tokens, because the net is conservative.

 $^{^{(\}mathrm{u})}$ number of initial tokens, because the net is conservative.

 $^{^{(\}mathrm{v})}$ number of initial tokens, because the net is conservative.

 $^{^{(\}mathrm{w})}$ number of initial tokens, because the net is conservative.