Model Checking Contest @ Petri Nets Page 1/8 77Property Language Manual

<%

Goals of the property language

The property language for the MCC @ Petri Nets is a language designed to allow participation of many tools. It allows to
write structural, reachability, CTL, LTL formulee. It is tightly related to Petri nets, that are the modeling formalism used during
the contest.

This language is designed to evolve in the future editions of the contest. It is also designed to integrate with Petri Net
Markup Language in the future. To do so, the language is provided as a RelaxNG grammar and an XML Schema generated
from it.

Contents
[1__Description of the langage| 2
[1.1 Property sets| 2
.. 2
E3TFOrMUIEE] . - - o o o e e e 2
1.4 Boolean formulael L e 3
[1.4.17 Reachability Operators| o e e e 3
[1.4.2 State operators|. e 3
[1.4.3 Path operators| e e e 3
[1.4.4 Petrinetoperators| e 4
[1.4.5 Boolean operators| e e 4
[1.4.6 Comparison operators| L e e 4
[1.5 Integerformuleg|. e 5
[1.9.17 Arithmetic operators| e 5
[1.9.2 Petrinet Operators| o e e e e e 5
1.6 Pl Nd [ransiions] e e e 5
2 Tools| 7
[2.1 How to generate the XML schema from the RelaxNG grammar? 7
[2.2 How to generate C++ classes from the XML Schema®| 7
[2.3 How to generate Java classes from the XML Schema®| L. 7
[2.4 How to generate Python classes from the XML Schema®? 7

[2.5 How to generate C# classes from the XML Schema®?. 8

Ao
Z ¢
/.’»

Model Checking Contest @ Petri Nets Page 2/8 7"Property Language Manual

1 Description of the langage

The property language is designed as a RelaxNG grammar. Thus, properties as given in XML. We generate a text equivalent
from it, but it is not stable and only given for readability.

default namespace = "http://mcc.lip6.fr/"
start = property-set

1.1 Property sets

The property—set element is the root of the XML representation. It contains several properties.

default namespace = "http://mcc.lip6.fr/"
start = property-set

property—set = element property—set {
propertysx

1.2 Properties

A property is composed of several madatory parts: a unique identifier, a textual description of the property, and a formula.
It has a set of tags to give a hint about the class of tools that can compute the formula (structural, reachability, CTL or LTL).
These hints do not say that the formula is expressed exactly in the language given by the hint, but tells that given minor
changes, it could be.

A property also contains an optional part for the expected result. It gives the expected value and a textual explanation.

property = element property {
element id {
xsd:ID
} &
element description {
text
} &
element tags {
element is—structural { xsd:boolean } &
element is—reachability { xsd:boolean } &
element is—ctl { xsd:boolean } &
element is—1tl { xsd:boolean }
} &
element expected-result {
element value {
xsd:integer | xsd:boolean
} &
element explanation {
text

}
1?7 &
element formula {
formula
}
}

1.3 Formula

Formulee are the body of properties. They define what is expected to hold on the model. Formulas are currently of two main
types: formulee that return integers, and formulae that return Booleans.
formula =

boolean—formula
| integer—formula

/'}.,.

r

>

Model Checking Contest @ Petri Nets Page 3/8 7"Property Language Manual

1.4 Boolean formula

Boolean formulee are the majority of available formulee. We difen them in several parts.

boolean—formula = ...

1.4.1 Reachability operators

boolean—formula =

| element invariant {
boolean—formula

| element impossibility {
boolean—formula

| element possibility {
boolean—formula

I
e invariant evaluates to true if its subformula is verified for all states of the system;
e impossibility evaluates to true if its subformula is never verified for all states of the system;

e possibility evaluates to true if its subformula is verified for some states of the system (at least one).

1.4.2 State operators

These operators are the A and e operators of CTL.

boolean—formula =

| éiément all-paths {
boolean—formula

| element exists—path {
boolean—formula
}
| ...

1.4.3 Path operators

These operators are the x, 6, F and v operators of CTL and LTL.

boolean—formula =

| éiément globally {
boolean—formula

}
| element finally {
boolean—formula

| element next {
boolean—formula &
element if-no—successor { xsd:boolean } &
element steps { xsd:positiveInteger }

| element until {

element before {
boolean—formula

} &

element reach {
boolean—formula

} &

element strength {
"weak" | "strong"

Model Checking Contest @ Petri Nets Page 4/8

e next evaluates to true if its subformula is verified steps states after along the path from the current state; the if—no—
successor value is the value to return if the successor state does not exist;

e until has a strength modifier, allowing the weak until.

1.4.4 Petri net operators

boolean—formula =

| element deadlock { empty }
| element is—fireable {
transition+
}
| ...

e deadlock evaluates to true if the current state is in dealock (has no successor);

e is—fireable evaluates to true if one of the set of transitions given is fireable from the current state.

1.4.5 Boolean operators

These are usual Boolean operators.

boolean—formula =

| element true { empty }

| element false { empty }

| element negation {
boolean—formula

| element conjunction {
boolean—formula,
boolean—formula+

| element disjunction {
boolean—formula,
boolean—formula+

| element exclusive—disjunction {
boolean—formula,
boolean—formula+

| element implication {
boolean—formula,
boolean—formula
}
| element equivalence {
boolean—formula,
boolean—formula+

1.4.6 Comparison operators

These are integer comparison operators.

boolean—formula =

| element integer—eq {
integer—expression,
integer—expression

| element integer—ne {
integer—expression,
integer—expression

| element integer—1lt {
integer—expression,
integer—expression

| element integer—le {
integer—expression,
integer—expression

}

/'},_.

r g

>

Model Checking Contest @ Petri Nets Page 5/8 7 Property Language Manual

| element integer—gt {
integer—expression,
integer—expression

| element integer—ge {
integer—expression,
integer—expression

}
| ...

1.5 Integer formulae

An integer formula is an integer expression. The tool must return the integer, that is the result of the expression.

integer—formula =
integer—expression

integer—expression = ...

1.5.1 Arithmetic operators

These are usual arithmetic operators for integers.

integer—expression =

element integer—constant {
xsd:integer

| element integer—sum {
integer—expression,
integer—expression+
| element integer—product {
integer—expression,
integer—expression+
}
| element integer—difference {
integer—expression,
integer—expression
}
| element integer—division {

integer—expression,
integer—expression

1.5.2 Petri net operators

integer—expression =

| eléﬁént place—bound {
place+

| element tokens—count {
place+
| ...

e place—bound returns the exact of estimated bound of a set of places; for several places, it means the maximum number
of tékens in all these places at the same time;

e tokens—count returns the exact number of tokens in a set of places.

1.6 Places and Transitions

Places and transitions are uniquely identified. The identifiers are those of the PNML file.

Model Checking Contest @ Petri Nets Page 6/8

place =
element place {
xsd: IDREF
}

transition =
element transition {
xsd: IDREF
}

.-
 (

Model Checking Contest @ Petri Nets Page 7/8 7"Property Language Manual

2 Tools

The RelaxNG grammar can be downloaded from http://mcc.1lip6.fr/properties/mcc-properties.rnc|using:
wget http://mcc.lip6.fr/properties/mcc—properties.rnc

The XML schema file can be downloaded from http://mcc.1ip6.fr/properties/mcc-properties.xsd Using:
wget http://mcc.lip6.fr/properties/mcc—properties.xsd

2.1 How to generate the XML schema from the RelaxNG grammar?

The Trang tool is able to transform the RelaxNG grammar into an XML Schema. Visit http://www.thaiopensource.com/
relaxng/trang.html|to install this tool.

trang —I rnc —0 xsd mcc—properties.rnc mcc—properties.xsd

2.2 How to generate C++ classes from the XML Schema?

Generation of C+ classes requires Code Synthesis’ xsd tool (http://www.codesynthesis.com/products/xsd/). This tool
converts the XML Schema of the property language to a set of C+ classes, an XML validating parser, and an XML out-
put. This tool is free software, and is available for numerous platforms. It is available at http://www.codesynthesis.
com/products/xsd/download.xhtml. Parsing and validating XML also requires to install Xerces-C+, available at http:
//xerces.apache.org/xerces-c/.

After installing the xsd tool, you have to fix the file xsd/cxx/zc—istream. txx:

35c¢35
< setg (b, b, e);
> this—>setg (b, b, e);

The conversion from the XML Schema to C+ classes is then performed using the following command:

mkdir —o src/cxx/

xsd cxx—tree \
—generate—serialization \
—generate—doxygen \
—generate—ostream \
—generate—comparison \
—generate—detach \
—generate—default—ctor \
—generate—polymorphic —polymorphic—type—all \
—namespace—map http://mcc.lip6.fr=mcc \
—output—dir src/cxx/ \
—root—element property—set \
mcc—properties.xsd

2.3 How to generate Java classes from the XML Schema?

Conversion from the XML Schema to Java classes requires the Java Architecture for XML Binding (JAXB —http://jaxb.
java.net/). Itis included in recent Java distributions.

To generate the classes, use the following command:

mkdir —o src/java/
xjc —d src/java/ —p mcc mcc—properties.xsd

It generates a set of Java files in the java directory.

2.4 How to generate Python classes from the XML Schema?

The python script generateDS (http://www.rexx.com/~dkuhlman/generateDS.html) generates Python code from the XML
Schema.

mkdir —p src/python/
python generateDS.py —m —f —silence —o src/python/mcc—properties.py mcc—properties.xsd

http://mcc.lip6.fr/properties/mcc-properties.rnc
http://mcc.lip6.fr/properties/mcc-properties.xsd
http://www.thaiopensource.com/relaxng/trang.html
http://www.thaiopensource.com/relaxng/trang.html
http://www.codesynthesis.com/products/xsd/
http://www.codesynthesis.com/products/xsd/download.xhtml
http://www.codesynthesis.com/products/xsd/download.xhtml
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://jaxb.java.net/
http://jaxb.java.net/
http://www.rexx.com/~dkuhlman/generateDS.html

L

Model Checking Contest @ Petri Nets Page 8/8 7"Property Language Manual

2.5 How to generate C# classes from the XML Schema?

There seems to be also tools for C# developers:
http://stackoverflow.com/questions/386155/comparison-of-xsd-codegenerators-c. We did not test them, but are

interested by feedback if you use one.

http://stackoverflow.com/questions/386155/comparison-of-xsd-codegenerators-c

	Description of the langage
	Property sets
	Properties
	Formulæ
	Boolean formulæ
	Reachability operators
	State operators
	Path operators
	Petri net operators
	Boolean operators
	Comparison operators

	Integer formulæ
	Arithmetic operators
	Petri net operators

	Places and Transitions

	Tools
	How to generate the XML schema from the RelaxNG grammar?
	How to generate C++ classes from the XML Schema?
	How to generate Java classes from the XML Schema?
	How to generate Python classes from the XML Schema?
	How to generate C# classes from the XML Schema?

